Daly, J. J. (1964). J. Chem. Soc. pp. 3799-3810.
Dunne, B. J. \& Orpen, A. G. (1991). Acta Cryst. C47, 345-347.
Enraf-Nonius (1989). CAD-4 Software. Version 5. Enraf-Nonius. Delft, The Netherlands.
Fenske, D., Basoglu, R., Hachgenei, J. \& Rogel, F. (1984). Angen: Chem. Int. Ed. Engl. 23, 160-162.
Fryzuk, M. D., Montgomery, C. D. \& Retting, S. J. (1991). Organometallics, 10, 467-473.
Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-109.
Mackay, A. L. (1984). Acta Cryst. A40, 165-166.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1988). J. Appl. Cryst. 21, 578-579.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Spek, A. L. (1997). HELENA. Program for Data Reduction. Utrecht University, The Netherlands.

Acta Cryst. (1998). C54, 1698-1701

Quininium Hydrogen (S,S)-Tartrate Hemihydrate, a Salt with a Unique Conformation of the Hydrogen Tartrate Ion

Carsten Rytiersgaard and Sine Larsen

Centre for Crystallographic Studies, Department of Chemistry, Universitetsparken 5, DK-2100 Copenhagen, Denmark. E-mail: sine@xray.ki.ku.dk
(Received 5 December 1997; accepted 23 March 1998)

Abstract

Two independent ion pairs [(6-methoxy-4-quinolyl)(5-vinyl-1-azoniabicyclo[2.2.2]octan-2-yl)methanol hydrogen 2,3-dihydroxybutanedioate] and a water molecule are found in the asymmetric unit of $2 \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}^{ \pm}$.$2 \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$. The two cations are virtually identical, but the two anions have markedly different stereochemistries. One of these anions adopts a unique conformation not observed previously for hydrogen tartrate ions. The packing resembles the arrangement in cinchonidinium (S)-mandelate, with hydrogen-bonded chains of alternating cations and anions. The herringbone stacking of the quinoline ring systems of the cations resembles the pattern seen in other cinchona structures.

Comment

A traditional method used to isolate the pure enantiomers from a racemic mixture is through the formation of diastereomeric compounds. The racemate is reacted with a suitable resolving agent, i.e. an optically active
compound with which it can form diastereomeric salts. The resulting salts may differ so much in their solubility that separation of the enantiomers can be achieved.

As part of our investigations of the factors that influence the suitability of a resolving agent, we are investigating the diastereomeric salts formed by the cinchona alkaloids and optically active tartaric acid. Both the cinchona alkaloid quinine and tartaric acid are frequently used as resolving agents for racemic acids and bases, respectively, and the salt, (I), formed by the reaction of quinine with optically pure ($(S, S$)-tartaric acid was an obvious candidate for structure determination.

(I)

Two independent ion pairs (A and D) are found in the asymmetric unit. Like the free base, protonated quinine is a rather rigid molecule. In accordance with this, the two cations have almost identical geometry and stereochemistry (Fig. 1), and compare well with the geometry of the quininium ion in its mandelate salt (Gjerløv \& Larsen, 1997b). The only significant variation of the stereochemistry involves the vinyl group, which is the most flexible part of the cation. In the present structure, the $\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26-\mathrm{C} 27$ torsion angles are 127.5 (2) and 116.0 (2) (for the ions labelled A and D, respectively), close to the average value found in a comparison of different compounds of cinchona alkaloids (Gjerløv \& Larsen, 1997a). In the quininium mandelate salt, the corresponding torsion angle is $114.2(2)^{\circ}$ (Gjerløv \& Larsen, 1997b).
The two anions adopt significantly different conformations in the crystal, as shown in Fig. 1. A search in the Cambridge Structural Database (Allen \& Kennard, 1993) for hydrogen tartrate ions resulted in 89 salts of organic cations. In all these compounds, the hydrogen tartrate ions have an extended conformation with the backbone torsion angles ($\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$) in a narrow range of $\pm 16^{\circ}$ around 180°. The A anion conforms well with this picture, with a torsion angle of $172.80(13)^{\circ}$, whereas the equivalent angle in the D anion is $-48.5(2)^{\circ}$. This first example of a hydrogen tartrate ion in a quite unique conformation is likely to be an effect of the crystal packing.

Each cation has two hydrogen-bond donors (O18 and N 2) and only one hydrogen-bond acceptor (O18), whereas each hydrogen tartrate ion has three potential hydrogen-bond donors and six acceptor atoms. One water molecule with two donor H atoms and one acceptor is also present in the structure. All potential

Fig. 1. ORTEPII (Johnson, 1976) drawing of the two ion pairs of (I). The displacement ellipsoids enclose 50% probability and the H atoms are drawn as spheres with a fixed radius.
hydrogen-bond donors take part in hydrogen bonds, with three of the H atoms (H43A, H48A and H52A) involved in three-centre or bifurcated hydrogen bonds. Another unique characteristic among the hydrogen bonds listed in Table 2 is the presence of three intramolecular hydrogen bonds in the hydrogen tartrate ions. Such intramolecular hydrogen bonds are frequently observed in other α-hydroxy acids like mandelic acid (Larsen \& Lopez de Diego, 1993). Intermolecular hydrogen bonds link the hydrogen tartrate anions, water molecules and the hydrophilic parts of the cations into layers, as shown in the packing diagram (Fig. 2).

The arrangement of cations and anions is very similar to the packing in the cinchonidinium (S)-mandelate salt (Gjerløv \& Larsen, 1997a). The only difference between quinine and cinchonidine is the lack of the methoxy group at C12 in the latter. The hydrogen (S, S) tartrate ion and the (S)-mandelate ion each contain an α-hydroxycarboxylic acid moiety, but apart from this, they are not structurally similar and one would not have predicted that they could form salts so closely related structurally. Cinchonidinium (S)-mandelate crystallizes in the same space group as the present structure, with very similar values for the a and b axes [21.400 (2) and 6.2777 (6) \AA, respectively]. The c axis of 17.853 (2) \AA corresponds to half of the c axis in quininium hydrogen

Fig. 2. A stereopair illustrating the crystal packing. The structure is viewed along the b axis with the a axis horizontal. The ion pair labelled D is drawn with open bonds. The intermolecular hydrogen bonds are shown as thin lines.
(S, S)-tartrate and therefore only one ion pair is found in the asymmetric unit of the cinchonidinium salt.

A characteristic feature of the crystal packing of the cinchona mandelates is their hydrogen-bonded chains of alternating cations and anions. Each cation interacts with two anions that are related by translational symmetry along a ca $6.2 \AA$ axis. Similar chains of cations and anions parallel to the b axis are found in quininium hydrogen (S, S)-tartrate, but the cation-anion interactions are different in the two different ion-pair chains, as
shown in Fig. 2 and Table 2. In the A chain, the $\mathrm{N} 2-\mathrm{H}$ group forms three-centre hydrogen bonds to the hydroxy group (O4) and the O 5 atom of the carboxylate group, and $\mathrm{O} 18-\mathrm{H}$ forms three-centre hydrogen bonds to the two hydroxy groups of an anion translated along the b axis. The interactions in the chain formed by the D ion pairs resemble the arrangement found in the mandelate salts. The N2H group is hydrogen bonded to one of the O atoms (O6) of the carboxylate group and $\mathrm{O} 18-\mathrm{H}$ is hydrogen bonded to the other O atom (O 5) of an anion related by translation along the b axis. This arrangement of hydrogen-bonded chains leads to the same herring-bone stacking of the quinoline ring systems of the cations as found in the cinchonidinium mandelate salts (Gjerløv \& Larsen, 1997a). The quinoline systems related by the crystallographic twofold axis make interplanar angles of $63.8(1)$ and $65.7(1)^{\circ}$ for the A and D cations, respectively.

It is particularly noteworthy that the hydrogen tartrate ions do not form the head-to-tail arrangement found in almost all hydrogen tartrate structures, where the anions are linked by short O-H. O hydrogen bonds between the carboxylic acid group of one molecule and the carboxylate group of another anion related by a translational period of ca $7 \AA$ (Fogassy et al., 1986). The two anions form an anion pair linked by one such hydrogen bond ($\mathrm{O} 1 D-\mathrm{H} 41 D \cdots \mathrm{O} 6 A$); its two terminal carboxy groups form hydrogen bonds with the cations and are part of the cation-anion chains. In the present structure, it appears that it is the interactions between the cinchona cations that exert the strongest effect on the crystal packing.

Experimental

Suitable crystals of (I) were obtained after slow evaporation of a solution prepared by mixing quinoline (0.4 mol) in ethanol (20 ml) with (S, S)-tartaric acid (0.4 mol) in an equivalent amount of ethanol.

Crystal data

$2 \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}^{\mathrm{O}} .2 \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}^{-} .-$	$\mathrm{Cu} K \alpha$ radiation
$\mathrm{H}_{2} \mathrm{O}$	$\lambda=1.5418 \AA$
$M_{r}=967.02$	Cell parameters from 20
Monoclinic	reflections
$C 2$	$\theta=28.78-40.31^{\circ}$
$a=21.198(8) \AA$	$\mu=0.888 \mathrm{~mm}^{-1}$
$b=6.3283(9) \AA$	$T=122.0(5) \mathrm{K}$
$c=35.442(9) \AA$	Rod
$\beta=104.44(2)$	$0.6 \times 0.1 \times 0.1 \mathrm{~mm}$
$V=4604(2) \AA^{\circ}$	Transparent

Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction: none 10808 measured reflections 9338 independent reflections 8929 reflections with

$$
I>2 \sigma(I)
$$

$R_{\text {int }}=0.021$
$\theta_{\text {max }}=74.88^{\circ}$
$h=0 \rightarrow 26$
$k=-7 \rightarrow 7$
$l=-44 \rightarrow 42$
4 standard reflections frequency: 167 min intensity decay: none

Refinement

$\begin{array}{ll}\text { Refinement on } F^{2} & (\Delta / \sigma)_{\text {max }}=0.051 \\ R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037 & \Delta \rho_{\text {max }}=0.200 \mathrm{e}^{-3}\end{array}$
$w R\left(F^{2}\right)=0.098$
$S=1.036$
9338 reflections
640 parameters
H atoms: see below
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F^{2}\right)+(0.0601 P)^{2}\right.$
$+1.5909 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$\Delta \rho_{\text {max }}=0.200 \mathrm{e}^{\mathrm{A}} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.386 \mathrm{e}^{-3}$
Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)
Absolute structure: Flack (1983)

Flack parameter $=0.09(10)$

Table 1. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$

$\mathrm{C} 1 A-\mathrm{O} 2 \mathrm{~A}$	1.215 (2)	CID-02D	1.213 (2)
$\mathrm{C} 1 A-\mathrm{O} 1 A$	1.318 (2)	CID-01D	1.304 (3)
$\mathrm{C} 1 A-\mathrm{C} 2 A$	1.521 (2)	C1D-C2D	1.528 (3)
$\mathrm{C} 2 A-\mathrm{O} 3 \mathrm{~A}$	1.4163 (19)	C2D-03D	1.410 (2)
$\mathrm{C} 2 A-\mathrm{C} 3 A$	1.527 (2)	C2D-C3D	1.555 (3)
$\mathrm{C} 3 A-\mathrm{O} 4 A$	1.4183 (19)	C3D-O4D	1.421 (2)
C3A-C4A	1.527 (2)	C3D-C4D	1.531 (2)
C4A-O5A	1.247 (2)	C4D-O5D	1.247 (2)
C4A-06A	1.272 (2)	C4D-06D	1.263 (2)
C9A-C18A	1.520 (2)	C9D-C18D	1.522 (2)
C15A-N1A	1.364 (2)	C15D-N1D	1.372 (2)
N1A-C16A	1.317 (2)	N1D-C16D	1.319 (2)
C18A-O18A	1.424 (2)	C18D-O18D	1.420 (2)
C18A-C19A	1.542 (2)	C18D-C19D	1.543 (2)
C19A-N2A	1.520 (2)	C19D-N2D	1.515 (2)
C23A-N2A	1.505 (2)	C23D-N2D	1.510 (2)
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 24 \mathrm{~A}$	1.507 (2)	$\mathrm{N} 2 \mathrm{D}-\mathrm{C} 24 \mathrm{D}$	1.504 (2)
C25A-C26A	1.506 (2)	C25D-C26D	1.501 (2)
C26A-C27A	1.309 (3)	C26D-C27D	1.316 (3)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C1A}-\mathrm{O} 1 \mathrm{~A}$	124.10 (16)	$\mathrm{O} 2 \mathrm{D}-\mathrm{C1D-O1D}$	126.92 (19)
O3A-C2A-C1A	111.58 (14)	O3D-C2D-C1D	111.66 (16)
$\mathrm{O} 4 A-\mathrm{C} 3 A-\mathrm{C} 4 A$	108.87 (13)	O4D-C3D-C4D	112.32 (15)
O5A-C4A-O6A	125.45 (17)	O5D-C4D-O6D	125.88 (15)
C9A-C18A-C19A	106.88 (12)	C9D-C18D-C19D	109.09 (13)
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 19 \mathrm{~A}-\mathrm{C} 18 \mathrm{~A}$	113.35 (12)	N2D-C19D-C18D	111.90 (13)
C27A-C26A-C25A	123.42 (18)	$\mathrm{C} 27 \mathrm{D}-\mathrm{C} 26 \mathrm{D}-\mathrm{C} 25 \mathrm{D}$	124.38 (17)
$\mathrm{OIA}-\mathrm{ClA}-\mathrm{C} 2 \mathrm{~A}-\mathrm{O} 3 \mathrm{~A}-175.11$		- 175.11	
$\mathrm{O} 3 A-\mathrm{C} 2 A-\mathrm{C} 3 A-\mathrm{O} 4 A$		56.47	
$\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{C} 3 A-\mathrm{C} 4 A$		172.80	
$\mathrm{O} 4 A-\mathrm{C} 3 A-\mathrm{C} 4 \mathrm{~A}-\mathrm{O} 6 \mathrm{~A}$		-174.49	
C17A-C9A-C18A-O18A		A -25.2	
C17A-C9A-C18A-C19A		A 95.96	
C18A-C19A-C20A-C21A		1 - -133.24	
$\mathrm{C} 20 \mathrm{~A}-\mathrm{C} 21 A-\mathrm{C} 22 A-\mathrm{C} 23 A$		3 A -58.42	
$\mathrm{C} 22 A-\mathrm{C} 23 A-\mathrm{N} 2 A-\mathrm{C} 19 \mathrm{~A}$		A 59.65	
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 24 \mathrm{~A}-\mathrm{C} 25 A-\mathrm{C} 26 \mathrm{~A}$		A 124.23	
C24A-C25A-C26A-C27A		$7 \mathrm{~A} \quad 127.5$	
$\mathrm{OI} D-\mathrm{C} 1 D-\mathrm{C} 2 D-\mathrm{O} 3 D$		156.38	
$\mathrm{O} 3 D-\mathrm{C} 2 \mathrm{D}-\mathrm{C} 3 D-\mathrm{O} 4 D$		-161.34	
C1D-C2D-C3D-C4D		-48.5 (
$\mathrm{O} 4 \mathrm{D}-\mathrm{C} 3 D-\mathrm{C} 4 \mathrm{D}-\mathrm{O} 6 \mathrm{D}$		-23.7 (
C17D-C9D-C18D-O18D		$8 D \quad-20.5$	
C17D-C9D-C18D-C19D		D 100.56	
C18D-C19D-C20D-C21D		1D - 127.58	
$\mathrm{C} 20 \mathrm{D}-\mathrm{C} 21 \mathrm{D}-\mathrm{C} 22 \mathrm{D}-\mathrm{C} 23 \mathrm{D}$		$3 D^{-62.20}$	

$\mathrm{C} 22 D-\mathrm{C} 23 D-\mathrm{N} 2 D-\mathrm{C} 19 D$	$56.97(18)$
$\mathrm{N} 2 D-\mathrm{C} 24 D-\mathrm{C} 25 D-\mathrm{C} 26 D$	$128.03(15)$
$\mathrm{C} 24 D-\mathrm{C} 25 D-\mathrm{C} 26 D-\mathrm{C} 27 D$	$116.0(2)$

Table 2. Hydrogen-bonding geometry $\left({ }^{\circ},{ }^{\circ}\right)$

$D-\mathrm{H} \cdots A$	H \cdots A	D...A	$D-\mathrm{H} \cdots A$
O3A-H43A . O 2 A	2.37	2.736 (2)	107
O3D-H43D . O2D	2.27	2.728 (2)	115
O4D-H44D \cdot O66	2.40	2.698 (2)	102
O1A-H41A $\cdots \mathrm{O}^{1}{ }^{\text {²}}$	1.74	2.564 (2)	165
O3A-H43A . . O5A ${ }^{\text {in }}$	2.07	2.861 (2)	158
O4A-H44A $\cdots \mathrm{O} 4 D^{\mathrm{i}}$	1.92	2.747 (2)	166
OID- $\mathrm{H} 41 \mathrm{D} \cdots \mathrm{O} 6 A$	1.66	2.488 (2)	167
O18A-H48A $\cdots \mathrm{O}^{\text {a }}{ }^{\mathrm{ml}}$	2.12	2.872 (2)	149
O18A-H48A . . O4A ${ }^{\text {ni }}$	2.49	3.165 (2)	138
N2A-H52A.. O4A	2.38	2.997 (2)	126
N2A-H52A . O5A	1.95	2.817 (2)	160
$\mathrm{N} 2 \mathrm{D}-\mathrm{H} 52 \mathrm{D} \cdots \mathrm{O} 6 \mathrm{D}$	1.80	2.740 (2)	162
O18D-H48D . OS ${ }^{\text {i }}$	1.83	2.657 (2)	171
O61-H61A . ${ }^{\text {O }}$ O $D^{\text {i }}$	1.93 (3)	2.720 (2)	156 (3)
O61-H61B..O6D	1.86 (3)	2.725 (2)	166 (3)

The data reduction was performed with the DREADD programs (Blessing, 1989). Direct methods failed to provide a solution and Patterson search methods (PATSEE; Egert \& Sheldrick, 1985) were employed instead. Cinchonidine without substituents was used as a search model and gave the positions of the cations. The refinement of the structure was performed with SHELXL93 (Sheldrick, 1993) and in the final stages with SHELXL97 (Sheldrick, 1997). The H atoms, shown clearly in the difference electron-density map, were fixed in idealized positions, each with an isotropic displacement parameter of $1.5 U_{\text {eq }}$ of the attached atom.

We thank Mr Flemming Hansen for technical assistance with the data collection. This work was supported by a grant from The Danish Natural Science Research Council.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OS1012). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
Blessing, R. H. (1989). J. Appl. Chem. 22, 396-397.
Egert, E. \& Sheldrick, G. M. (1985). Acta Cryst. A41, 262-268.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Fogassy, E., Ács, M., Faigl, F., Simon, K., Rohonczy, J. \& Ecsery, Z. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 1881-1886.

Gjerløv, A. \& Larsen, S. (1997a). Acta Cryst. B53, 708-718.
Gjerløv, A. \& Larsen, S. (1997b). Acta Cryst. C53, 1505-1508.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Larsen, S. \& Lopez de Diego, H. (1993). Acta Cryst. B49, 303-309.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1998). C54, 1701-1703

N, N^{\prime}-Bis(5-bromo-2-hydroxybenzylidene)-1,3-propanediamine

Yalcin Elerman, ${ }^{a}$ Ayhan Elmali, ${ }^{a}$ Mehmet Kabak ${ }^{a}$ and Ingrid Svoboda ${ }^{b}$
${ }^{a}$ Department of Physics Engineering, Faculty of Sciences, University of Ankara, 06100 Besevler, Ankara, Turkey, and
${ }^{b}$ Strukturforschung, Fachbereich Materialwissenschaft, Technische Universität Darmstadt, Petersenstraße 23, D-64287 Darmstadt, Germany. E-mail: elmali@science. ankara.edu.tr
(Received 9 February 1998; accepted 3 April 1998)

Abstract

The title compound \{alternative name for this Schiff base: 4,4'-dibromo-2, 2^{\prime}-[propanediylbis(nitrilomethylidyne)]diphenol; $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ \} displays two strong intramolecular $\mathrm{N} \cdots \mathrm{H}-\mathrm{O}$ hydrogen bonds within each salicylideneimine unit. The molecule is not planar and the two aromatic rings are inclined at an angle of $69.8(1)^{\circ}$.

Comment

Schiff bases and their biologically active complexes have been studied extensively over the past decade. Although numerous transition metal complexes of Schiff bases have been structurally characterized, relatively few free Schiff bases have been similarly characterized (Garnovskii et al., 1993). N-Salicylideneaniline and its derivatives show photochromism and thermochromism in the solid state (Cohen et al., 1964). These effects are produced by intramolecular proton transfer associated with a change in the π-electron configuration (Hadjoudis et al., 1987).

In the course of a structural investigation of Schiff bases (Elerman et al., 1991, 1992, 1994, 1995, 1997, 1998; Elmali et al., 1995; Elmali \& Elerman, 1997, 1998; Elmali, Elerman \& Zeyrek, 1998), the structure of the tetradentate Schiff base ligand, (I), was determined.

(I)

Several non-planar tetradentate Schiff bases similar to (I) have been reported (Pahor et al., 1976, 1978; Subrahmanyam et al., 1982; Cimerman et al., 1992; Senn \& Nowacki, 1977; Elerman et al., 1991, 1994; Corden et al., 1996). The title molecule is also not planar. The

